Deforming the Gauss-Manin Connection

نویسنده

  • Glenn Stevens
چکیده

§0. The Gauss-Manin Connection. Let p > 2 be a prime and N ≥ 4. The p-adic modular curve X1(Np) will be denoted X. We let X = W0 ∪W∞ denote the usual decomposition of X as the union of two wide open sets. Hence Wi (i = 0 or ∞) is a wide open neighborhood of the ordinary component Zi containing the cusp i (= 0 or ∞) and the intersection W = W∞ ∩ W0 is the union the supersingular annuli. We have Z∞ := W∞ \ W and Z0 := W0 \ W . Let X(v) be the largest connected wide open neighborhood of Z∞ on which the canonical subgroup is defined. Let π : E −→ X denote the universal generalized elliptic curve over X and let H := H DR(E/X) denote the De Rham cohomology sheaf on X. Let ∇ : H −→ H denote the Gauss-Manin connection on H. One knows from Katz that H has a natural decomposition as H = ω−1 ⊕ ω

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-manin Connections for Arrangements, Iii Formal Connections

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a complex rank one local system. We define formal Gauss-Manin connection matrices in the Aomoto complex and prove that, for all arrangements and all local systems, these formal connection matrices specialize to Gauss-Manin connection matrices.

متن کامل

Gauss-manin Connections for Arrangements

We construct a formal connection on the Aomoto complex of an arrangement of hyperplanes, and use it to study the Gauss-Manin connection for the moduli space of the arrangement in the cohomology of a complex rank one local system. We prove that the eigenvalues of the Gauss-Manin connection are integral linear combinations of the weights which define the local system.

متن کامل

Gauss-manin Connections for Arrangements, Ii Nonresonant Weights

We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a nonresonant complex rank one local system. Aomoto and Kita determined this GaussManin connection for arrangements in general position. We use their results and an algorithm constructed in this paper to determine this Gauss-Manin connection for all arrangements.

متن کامل

A Formula for Gauss-manin Determinants

Let K be a function field over a field k of characteristic 0, and let j : U ⊂ PK be a Zariski open set of the projective line. We consider a flat connection (E,∇) on U . The de Rham cohomology groups H i DR(U/K,∇/K) carry a K/k connection, the Gauß-Manin connection, and taking the alternate tensor of the determinant connections ⊗(detH i DR(U/K,∇/K),Gauß−Manin) (−1)i , one defines the Gauß-Manin...

متن کامل

Algorithms for the Gauss-Manin Connection

We give an introduction to the theory of the Gauss-Manin connection of an isolated hypersurface singularity and describe an algorithm to compute the V-filtration on the Brieskorn lattice. We use an implementation in the computer algebra system Singular to prove C. Hertling’s conjecture about the variance of the spectrum for Milnor number μ ≤ 16. Algorithms for the Gauss-Manin connection

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002